The Theory of Consumer Behavior

Manjaree Anand
Assistant Professor
RDS College, BRABU Muzaffarpur

The Theory of Consumer Behavior

The principle assumption upon which the theory of consumer behavior and demand is built is: a consumer attempts to allocate his/her limited money income among available goods and services so as to maximize his/her utility (satisfaction).

Theory of Consumer Behavior

\square Useful for understanding the demand side of the market.
\square Utility - amount of satisfaction derived from the consumption of a commoditymeasurement units \Rightarrow utils

Theories of Consumer Choice

\square Utility Concepts:

The Cardinal Utility Theory (TUC)

- Utility is measurable in a cardinal sense
- cardinal utility - assumes that we can assign values for utility, (Jevons, Walras, and Marshall). E.g., derive 100 utils from eating a slice of pizza

The Ordinal Utility Theory (TUO)

- Utility is measurable in an ordinal sense
- ordinal utility approach - does not assign values, instead works with a ranking of preferences. (Pareto, Hicks, Slutsky)

The Cardinal Approach

Nineteenth century economists, such as Jevons, Menger and Walras, assumed that utility was measurable in a cardinal sense, which means that the difference between two measurement is itself numerically significant.

$$
\mathrm{U}_{\mathrm{X}}=f(\mathrm{X}), \mathrm{U}_{\mathrm{Y}}=f(\mathrm{Y}), \ldots \ldots
$$

Utility is maximized when:

$$
\mathrm{MU}_{\mathrm{X}} / \mathrm{MU}_{\mathrm{Y}}=\mathrm{P}_{\mathrm{X}} / \mathrm{P}_{\mathrm{Y}}
$$

The Cardinal Approach

\square Total utility (TU) - the overall level of

 satisfaction derived from consuming a good or service\square Marginal utility (MU) additional satisfaction that an individual derives from consuming an additional unit of a good or service. \checkmark Formula :

$$
\begin{aligned}
M U= & \frac{\text { Change in total utility }}{\text { Change in quantity }} \\
= & \underline{\Delta \mathrm{TU}}
\end{aligned}
$$

The Cardinal Approach

\square Law of Diminishing Marginal Utility (Return) = As more and more of a good are consumed, the process of consumption will (at some point) yield smaller and smaller additions to utility
\square When the total utility maximum, marginal utility $=0$
\square When the total utility begins to decrease, the marginal utility $=$ negative (-ve)

EXAMPLE

Number Purchased	Total Utility	Marginal Utility
$\mathbf{0}$	$\mathbf{0}$	0
$\mathbf{1}$	$\mathbf{4}$	4
$\mathbf{2}$	$\mathbf{7}$	3
$\mathbf{3}$	$\mathbf{8}$	1
$\mathbf{4}$	$\mathbf{8}$	0
$\mathbf{5}$	$\mathbf{7}$	-1

The Cardinal Approach

\square TU, in general, increases with Q
\square At some point, TU can start falling with Q (see $\mathrm{Q}=5$)
\square If TU is increasing, MU >0
\square From Q = 1 onwards, MU is declining \Rightarrow principle of diminishing marginal utility \Rightarrow As more and more of a good are consumed, the process of consumption will (at some point) yield smaller and smaller additions to utility

Consumer Equilibrium

\square So far, we have assumed that any amount of goods and services are always available for consumption
\square In reality, consumers face constraints (income and prices):

- Limited consumers income or budget
- Goods can be obtained at a price

Some simplifying assumptions

\square Consumer's objective: to maximize his/her utility subject to income constraint
$\square 2$ goods (X, Y)
\square Prices Px, Py are fixed
\square Consumer's income (I) is given

Consumer Equilibrium

\square Marginal utility per price \Rightarrow additional utility derived from spending the next price (RM) on the good
$\square \mathbf{M U}$ per $\mathbf{R M}=\underline{\mathbf{M U}}$ P

Consumer Equilibrium

\square Optimizing condition:

$$
\frac{M U_{X}}{P_{X}}=\frac{M U_{Y}}{P_{Y}}
$$

\square If

\Rightarrow spend more on good X and less of Y

Numerical Illustration

\mathbf{Q}_{x}	TU_{X}	MU_{x}	$\frac{\mathrm{MUx}}{\mathrm{P}_{\mathrm{x}}}$	Q_{Y}	TU_{Y}	MU_{Y}	$\underline{\mathrm{MU}_{\mathrm{Y}}}$
1	30	30	15	1	50	50	5
2	39	9	4.5	2	105	55	5.5
3	45	6	3	3	148	43	4.3
4	50	5	2.5	4	178	30	3
5	54	4	2	5	198	20	2
6	56	2	1	6	213	15	1.5

Simple Illustration

\square Suppose: $\quad \mathbf{X}=$ fishball
Y = fishcake
\square Assume: $\mathrm{P}_{\mathrm{X}}=2$

$$
\mathrm{P}_{\mathrm{Y}}=10
$$

Cont.

$\square 2$ potential optimum positions

\square Combination A: $\rightarrow \mathrm{X}=3$ and $\mathrm{Y}=4$
$-\mathrm{TU}=\mathrm{TU}_{\mathrm{X}}+\mathrm{TU}_{\mathrm{Y}}=45+178=223$
\square Combination B: $\rightarrow \quad \mathrm{X}=5$ and $\mathrm{Y}=5$
$-\mathrm{TU}=\mathrm{TU}_{\mathrm{X}}+\mathrm{TU}_{\mathrm{Y}}=54+198=252$

Cont.

\square Presence of 2 potential equilibrium positions suggests that we need to consider income. To do so let us examine how much each consumer spends for each combination.
\square Expenditure per combination

- Total expenditure $=P_{X} \mathbf{X}+\mathrm{P}_{\mathbf{Y}} \mathbf{Y}$
- Combination A: 3(2) + 4(10) = 46

Combination B: 5(2)+5(10)=60

Cont.

\square Scenarios:

- If consumer's income $=46$, then the optimum is given by combination \mathbf{A}.Combination B is not affordable
- If the consumer's income $=60$, then the optimum is given by Combination B....Combination \mathbf{A} is affordable but it yields a lower level of utility

Thank You

