Calculation of standard deviation: discrete series

Divya Kishore 9 July 2020

CALCULATION OF STANDARD DEVIATION- DISCERETE SERIES OR GROUPED DATA

Three Methods

- a) Actual Mean Method or Direct Method
- b) Assumed Mean Method or Short-cut Method
- c) Step Deviation Method

a) Actual Mean Method or Direct Method

• The S.D. for the discrete series is given by the formula.

$$\sigma = \sqrt{\frac{\sum f(x - \bar{x})^2}{n}}$$

Where \bar{x} is the arithmetic mean, x is the size of items, f is the corresponding frequency and $n = \sum f$

b) Assumed Mean Method or Short-cut Method

Standard deviation=
$$\sigma = \sqrt{\frac{\sum f d^2}{n} - \left(\frac{\sum f d}{n}\right)^2}$$

Where A is the assumed mean, d = x - A

f is the corresponding frequency and $n = \sum f$

Example:

Periods:	10	11	12
No. of patients:	2	7	11

Solution:

Period s:(x)	No. of patients(f)	d = x - A, $A = 13$	fd	d^2	fd ²
10	2	-3	-6	9	18
11	7	-2	-14	4	28
12	11	-1	-11	1	11
13	15	0	0	0	0
14	10	1	10	1	10
15	4	2	8	4	16
16	1	3	3	9	9
Total	N=∑ <i>f</i> =50		$\sum f d$ =-10		$\sum f d^2 = 92$

Mean=
$$\bar{x} = A + \frac{\sum d}{n}$$

= $13 + \frac{(-10)}{50}$
= 12.8
 $\bar{x} = 12.8$ is a fraction.

$$\sigma = \sqrt{\frac{\sum f d^2}{n} - \left(\frac{\sum f d}{n}\right)^2}$$

$$= \sqrt{\frac{92}{50} - \left(\frac{-10}{50}\right)^2}$$

$$= \sqrt{1.84 - 0.04}$$

$$= \sqrt{1.80}$$

$$= 1.342$$

c) Step Deviation Method

 We divide the deviation by a common class interval and use the following formula

Standard deviation=
$$\sigma = \sqrt{\frac{\sum f d^2}{n} - \left(\frac{\sum f d}{n}\right)^2} \times i$$

Where
$$i = \text{common class interval},$$

 $d = \frac{x-A}{i},$

A = is assumed mean

f = f is the respective frequency.

Example:

B.P.(mmHg):	102	106	110	114	118	122
No. of days:	3	9	25	35	17	10

Solution:

B.P.(mmHg)	No. of days (f)	$d=\frac{x-114}{4}$	fd	fd^2
102	3	-3	-9	27
106	9	-2	-18	36
110	25	-1	-25	25
114	35	0	0	0
118	17	1	17	17
122	10	2	20	40
126	1	3	3	9
Total	N=100		$\sum f d=-12$	$\sum f d^2 = 154$

126

A.
$$M = \bar{x} = A + \frac{\sum fd}{N} \times i$$

 $= 114 + \frac{(-12)}{100} \times 4$
 $= 114 - 0.48$
 $= 113.52 \text{ mm Hg}$

$$\sigma = \sqrt{\frac{\sum f d^2}{n} - \left(\frac{\sum f d}{n}\right)^2} \times i$$

$$= \sqrt{\frac{154}{100} - \left(\frac{-12}{100}\right)^2} \times 4$$

$$= \sqrt{154 - (-0.12)^2} \times 4$$

$$= \sqrt{154 - 0.0144} \times 4$$

$$= 1.235 \times 4$$

$$= 4.94 \text{ mm Hg.}$$

